MTH 213 Discrete Mathematics Fall 2017, 1-1

Assignment 11: MTH 213, Fall 2017

Ayman Badawi

QUESTION 1.

QUESTION 2. Draw the graph $F = \overline{K_{3,3}}$. Find $\chi'(F)$. What is $\chi'(K_{4,4})$?

QUESTION 3. Is there a tree where the vertices have degrees: 3, 3, 3, 1, 1, 1, 1, 1, 1? if yes then draw it.

Given that 4, 2, m, n, 1, 1 are degrees of a tree? What are the values of m, n? Note $|E_T| = |V_T| - 1$ and sum of all degrees = $2|E_T|$

Is there a graph D where $|E_D| = 6$ and $|E_{\overline{D}}| = 14$. Note that $|E_D| + |E_{\overline{D}}| = |E_{K_n}|$, where *n* is the order of D. IF *T* is a tree, then explain to me why DIJ-Algorithm is useless :))) ? (Note if T is a tree, then there is a unique path between any two vertices!)

Let $D = K_{4,4}$. What is CL(D)? Is it clear that CL(D) is Hamiltonian? So what can you say about D? Is D Hamiltonian and Eulerian?

Let $D = K_{2,3}$. What is CL(D)? Is CL(D) Hamiltonian? so what can you say about D? Is D Hamiltonian and Eulerian?

Let $D = K_{2,3}$. What is CL(D)? Is CL(D) Hamiltonian? so what can you say about D? Is D Hamiltonian and Eulerian?

Draw Petersen graph and find its χ' . Is Petersen graph Hamiltonian?

Draw 3-cubes and find its χ'

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Assignment 11

Trail 1 → H ² G1 ¹ A ² B ³ C ⁷ D ² E ³ F ⁵ H = 44 Torail 2 → H ⁵ F ³ E ² D ⁷ C ³ B ² A ¹ G1 ² H = 44 Only two possible trails. Choose either one as both have the same weight.

e) $V(s)$	odj (V(S))	L (adj)	E(s)
٤٢٦	B,D	L(B)=3, L(D)=7 B enter V(S)	{C−B,
€C, B }	A, H, D	L(A) = 5, L(H) = 4, L(D) = 7 H enter $N(s)$	B-H,
₹C, B, H}	G, F, D, A	L(GI) = 6, L(F) = 9, L(O) = 7 L(A) = 5 A enter V(s)	B-A,
ξC, B, H, A ξ	Gı,F,D	L(G)=6, L(F)=9, L(D)=7 G1 enter V(S)	H-G1,
ξC, B, H, A, G, ξ	F, D	L(F) = 9, $LD = 7D enter V(s)$	C - P
{C, B, H,A,G,D}	E,F	L(E) = 28 L(F) = 9 F enten V(s)	H - F
ξC, B, H, A, G, D, F}	E	L(E) = 12 E enter $V(s)$	F-E3

or

 $\kappa'(F) = 3$ $\kappa'(K_{4,4}) = \Delta(K_{4,4})$ = 4

 $9|E_0|=6$ |ED| + |ED| = |EKm| = 20 $|E_{\overline{O}}| = 14$ 20 = n(n-1) $40 = n^2 - n$ m is not an integer $\rightarrow n^2 - n - 40 = 0$ value. Hence there is no such graph where |EDI = 6 and |EDI = 14 d) DIJ Agori thm is used to find a unique path of minimum weight to each vortex in a graph. In a tree, every two vertices are connected by a unique path. If DIJ Algorithm is used on a tree, the resulting graph will be the same original tree. Hence the algorithm is useless for trees.

e) D= K4,4

Cl(D) =

Cl(D) is Hamiltonian because $\left[D = K_{m,m} (n = m = 4)\right]$ is hamiltonian

D is Eulerian because D = Kn,m where n, m = 4 are even integers. Degree of each vertex is even.

Cl(D)

 $D = K_{2,3}$

- D is not Hamiltonian because Cl(D) is not Hamiltonian.
- D is not Hamiltonian because D=Kn,m where n≠m
 - D is not Eulerian because
 D = Kn, m where mis not
 an even integer

 $deg(u) + deg(V) \ge n$ and a one not adjacent i) deg (v,) + deg (v2) = $6 \ge 5 \checkmark$ (Add on edge) ii) deg(v3) + deg(v4) = 4≥5× (No edge)

9) Petersen Graph = 3-regular graph of order 10 (connected) $\Delta = 3 \quad 3 \le \kappa' \le 4 \quad \kappa' = 4$ 3 Petersen Guraph is not hamiltonian 10 but it does have a hamiltonian path.

