Assignment 11: MTH 213, Fall 2017

Ayman Badawi

e) Lse the DIJ-Algorithm to find the weight minimum path between C' and every other vertex.

QUESTION 1.

QUESTION 2. Draw the graph $F=\overline{K_{3,3}}$. Find $\chi^{\prime}(F)$. What is $\chi^{\prime}\left(K_{4,4}\right)$?
QUESTION 3. Is there a tree where the vertices have degrees: $3,3,3,1,1,1,1,1$? if yes then draw it.
Given that $4,2, m, n, 1,1$ are degrees of a tree? What are the values of m, n ? Note $\left|E_{T}\right|=\left|V_{T}\right|-1$ and and sum of all degrees $=2\left|E_{T}\right|$

Is there a graph D where $\left|E_{D}\right|=6$ and $\left|E_{\bar{D}}\right|=14$. Note that $\left|E_{D}\right|+\left|E_{\bar{D}}\right|=\left|E_{K_{n}}\right|$, where n is the order of D.
IF T is a tree, then explain to me why DIJ-Algorithm is useless :))) ? (Note if T is a tree, then there is a unique path between any two vertices!)

Let $D=K_{4,4}$. What is $\mathrm{CL}(\mathrm{D})$? Is it clear that $C L(D)$ is Hamiltonian? So what can you say about D? Is D Hamiltonian and Eulerian?

Let $D=K_{2,3}$. What is $\mathrm{CL}(\mathrm{D})$? Is $C L(D)$ Hamiltonian? so what can you say about D ? Is D Hamiltonian and Eulerian?

Let $D=K_{2,3}$. What is $\mathrm{CL}(\mathrm{D})$? Is $C L(D)$ Hamiltonian? so what can you say about D ? Is D Hamiltonian and Eulerian?

Draw Petersen graph and find its χ^{\prime}. Is Petersen graph Hamiltonian?
Draw 3-cubes and find its χ^{\prime}

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Assignment 11
Q) 1)

a) Yes it is an Eulerian path because of most 2 vertices are of odd degree (B, H).

b) No, it is not Euberian because degree degree of each vertex is not even. $(\operatorname{deg}(B)=3, \operatorname{deg}(H)=3)$
c)

Trail $1 \rightarrow H \xrightarrow[2]{2} G \perp 2 B 3-1+21 E \underline{3} F \underline{5} H=44$
Trail $2 \rightarrow H \underline{5} \underline{3} \underline{21} D \geq C^{3} B 2 A \perp G 2 H=44$
Only two possible trails. Choose either one as both have the same weight.

Q 2)

$$
\begin{aligned}
& =K_{3,3} \rightarrow \\
& F=\bar{K}_{3,3} \\
& x^{\prime}(F)=3 \\
& x^{\prime}\left(K_{4,4}\right)= \\
& =4\left(K_{4,4)}^{3}\right. \\
&
\end{aligned}
$$

Q 3) a)

$\begin{array}{llllll}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{0} \\ 3,3, & v_{7} & v_{8} \\ 3,1,1,1,1,1\end{array}$
b) $\quad v_{1}, v_{2}, v_{3}, v_{4}, v_{s}, v_{6}$

c)

$$
\begin{array}{lr}
\left|E_{D}\right|=6 & \left|E_{D}\right|+\left|E_{\bar{D}}\right|=\left|E_{k_{n}}\right|=20 \\
\left|E_{\bar{D}}\right|=14 & 20=\frac{n(n-1)}{2} \\
40=n^{2}-n
\end{array}
$$

n is not as integer $\rightarrow n^{2}-n-40=0$
value.
Hence there is no such graph where $\left|E_{D}\right|=6$ and $\left|E_{D}\right|=14$
d) DIJ Agorithm is used to find a unique path of minimum weight to each vertex in a graph.
In a tree, every two vertices are connected by a unique path.
If DI J Algorithm is used on a tree, the resulting graph will be the same original tree. Hence the algorithm is useless far trees.
e) $D=K_{4,4}$

$C l(D)$ is Hamiltonian because $\left[D=K_{n, m}(n=m=4)\right]$ is hamiltonian
D is Eulerian because $D=K_{n, m}$ where $n, m=4$ are even integers.
Degree of each vertex is even.
f)

$$
D=K_{2,3}
$$

$C l(D)$

- D is not Hamiltonian because
$C l(D)$ is not Hamiltonian.
- D is not Hamiltonian because $D=K_{n, m}$ where $n \neq m$
- D is not Eulerian because $D=K_{n, m}$ where m is not an even integer
g) Petersen Graph $=3$-regular graph of order 10 (connected)

$$
\Delta=3 \quad 3 \leqslant x^{\prime} \leqslant 4 \quad x^{\prime}=4
$$

Petersen Graph is not hamiltonian but it does have a hamiltonian path.
h) 3-cube

1 cube

